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Figure 1: Multi-modal, multi-platform 3D grounding from 3EED. Given a scene and a structured
natural language expression, the task is to localize the referred object in 3D space. Our dataset captures
diverse embodied viewpoints from Vehicle, Drone, Quadruped platforms, presenting
unique challenges in spatial reasoning, scene analysis, and cross-platform 3D generalization.

Abstract

Visual grounding in 3D is the key for embodied agents to localize language-referred1

objects in open-world environments. However, existing benchmarks are limited to2

indoor focus, single-platform constraints, and small scale. We introduce 3EED, a3

multi-platform, multi-modal 3D grounding benchmark featuring RGB and LiDAR4

data from vehicle, drone, and quadruped platforms. We provide over 134,0005

objects and 25,000 validated referring expressions across diverse outdoor scenes6

– 10× larger than existing datasets. We develop a scalable annotation pipeline7

combining vision-language model prompting with human verification to ensure8

high-quality spatial grounding. To support cross-platform learning, we propose9

platform-aware normalization and cross-modal alignment techniques, and establish10

benchmark protocols for in-domain and cross-platform evaluations. Our findings11

reveal significant performance gaps, highlighting the challenges and opportunities12

of generalizable 3D grounding. The 3EED dataset and benchmark toolkit are13

released to advance future research in language-driven 3D embodied perception.14
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and Benchmarks. Do not distribute.
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Table 1: Summary of outdoor 3D grounding benchmarks. We compare key features from aspects
including: 1Platform ( Vehicle, Drone, Quadruped), 2Area Coverage, and 3Statistics.
Our dataset exhibits advantages on platform diversity, large collections of LiDAR (L) and camera (C)
scenes (Sce.), 3D objects (Obj.), referring expressions (Expr.), and rich elevation variations (Elev.).

Dataset Sensor Platform Scene Statistics
Coverage #Sce. #Obj. #Expr. #Elev.

Mono3DRefer [93] C ✓ ✗ ✗ 140m × 140m 2,025 8,228 41,140 42.8m
KITTI360Pose [35] L ✓ ✗ ✗ 140m × 140m - 14,934 43,381 42.8m

CityRefer [55] L ✗ ✓ ✗ - - 5,866 35,196 -
STRefer [43] L + C ✓ ✗ ✗ 60m × 60m 662 3,581 5,458 -

LifeRefer [43] L + C ✓ ✗ ✗ 60m × 60m 3,172 11,864 25,380 -
Talk2LiDAR [51] L + C ✓ ✗ ✗ 140m × 140m 6,419 - 59,207 48.6m
Talk2Car-3D [2] L + C ✓ ✗ ✗ 140m × 140m 5,534 - 10,169 48.6m

3EED (Ours) L + C ✓ ✓ ✓ 280m × 240m 23,618 134,143 25,551 80m

1 Introduction15

Grounding free-form language to 3D scenes is a core capability for embodied agents operating in the16

physical world [1, 12, 6, 7, 42]. By associating natural language expressions with physical objects in17

3D space, robots and autonomous systems can interpret high-level human instructions to perform18

downstream tasks, e.g., navigation, interaction, and situational awareness [59, 83, 92, 19, 58, 84, 82].19

Recent advances in 3D visual grounding have primarily focused on indoor benchmarks [31, 3, 30],20

where sensing is constrained, scenes are small, and objects are limited to household categories21

[88, 91]. However, real-world applications require models to operate in outdoor environments with22

greater spatial scale [54, 36], diverse viewpoints [60, 14], and sparse sensor data [5, 37].23

While recent datasets have begun addressing outdoor 3D grounding [34, 20, 83, 23], they remain24

limited by single-platform data (e.g., vehicle-mounted LiDAR), small scale with few objects and25

expressions, and a lack of multi-modal supervision, often providing only LiDAR or RGB but not26

both [24, 40, 27, 45, 32, 47]. These gaps limit the development of models that generalize across27

platforms, modalities, and real-world conditions.28

To address these gaps, we introduce 3EED, a large-scale, multi-platform, multi-modal benchmark for29

3D visual grounding in outdoor environments (see Fig. 1). Our dataset captures synchronized LiDAR30

and RGB data from three distinct robotic platforms: Vehicle, Drone, Quadruped. It31

provides over 134,000 object instances and 25,000 human-verified referring expressions, making32

it 10× larger than existing outdoor grounding benchmarks, as compared in Tab. 1.33

To enable scalable annotation, we develop a vision-language model prompting pipeline combined34

with human-in-the-loop verification to generate high-quality referring expressions. Additionally,35

we propose platform-aware normalization and cross-modal alignment techniques to standardize36

geometric and sensory data while preserving platform-specific characteristics. Based on these37

contributions, we establish a comprehensive benchmark suite covering in-domain, cross-platform,38

and multi-object grounding settings. Through extensive experiments with state-of-the-art models39

[31, 80], we reveal substantial performance gaps across platforms, exposing the challenges of robust40

and generalizable 3D visual grounding in real-world outdoor environments.41

To summarize, the key contributions of this work to the related fields include:42

• We present 3EED, the first large-scale, multi-platform, multi-modal 3D visual grounding bench-43

mark spanning Vehicle, Drone, Quadruped platforms, covering over 134,000 objects44

and 25,000 human-verified expressions, which is 10× larger than existing outdoor datasets.45

• We develop a scalable annotation pipeline combining vision-language model prompting with human46

validation, enabling high-quality and diverse language supervision.47

• We propose platform-aware normalization and cross-modal alignment to unify sensor geometry48

and synchronize LiDAR, RGB, and language cues, enabling consistency across diverse platforms.49
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Figure 2: Overview of annotation workflow. Left: We collect 3D boxes using multi-detector fusion,
tracking, filtering, and manual verification across platforms. Middle: Referring expressions are
produced by prompting a VLM with structured cues (class, status, position, relations), followed by
rule-based rewriting and human refinement. Right: Platform-specific word clouds highlight distinct
linguistic patterns in descriptions across vehicle, drone, and quadruped agents.

• We establish comprehensive benchmark protocols for in-domain, cross-platform, and multi-object50

grounding, along with strong baseline evaluations revealing key challenges and future directions.51

2 Related Work52

3D Visual Grounding. 3D visual grounding localizes objects in 3D scenes from natural language53

expressions. Early efforts focus on indoor RGB-D datasets like ScanRefer [12] and Nr3D [1], built54

on ScanNet [15] and ARKitScenes [4], with object categories mostly limited to furniture. Recent55

datasets such as Multi3DRefer [95] and EmbodiedScan [75] expand to multi-object and egocentric56

grounding. These resources have driven the development of various models [97, 89, 80, 22, 73, 31, 3,57

30, 76, 91, 98, 41, 88] focused on spatial-linguistic alignment in controlled indoor environments.58

3D Grounding in the Wild. Grounding language in outdoor 3D scenes introduces challenges such59

as large spatial scales, sparse point clouds, and diverse object distributions [38, 39, 81, 71, 72, 63].60

Talk2Car [17], based on nuScenes [8], is an early benchmark for driving scenarios. STRefer [43] ex-61

tends this with RGB and LiDAR from mobile agents, focusing on human activities. Mono3DVG [93]62

studies grounding in monocular images without 3D sensors. KITTI360Pose [35] uses templated63

language for text-to-position grounding in KITTI-360 [21], targeting positions rather than objects.64

Talk2LiDAR [51] and CityRefer [55] provide multi-sensor and city-scale grounding tasks. However,65

all these datasets are limited to single-platform data acquisition.66

Language-Guided Perception in Embodied Platforms. Language understanding has also been67

explored in interactive [77, 44, 53, 96, 25] and multi-task perception settings [98, 13, 28, 33, 85,68

49, 50, 65, 52, 48, 86]. Refer-KITTI [79] based on KITTI [21] enables tracking multiple objects69

with a single prompt. nuPrompt [78] employs a language prompt to predict the described object70

trajectory across views and frames. nuScenes-QA [62] formulates a multi-modal question answering71

benchmark using nuScenes [8] data. DriveLM [69] formulates driving as a graph-based visual72

question answering task, leveraging structured visual representations and large language models [56]73

to answer route-planning and scene-understanding queries. These methods, however, focus on74

vehicle-based data [21, 8] and semantic-level tasks [66, 29], whereas our dataset enables fine-grained75

3D grounding across diverse embodied agents, including drones and legged robots.76

3 3EED: Multi-Platform Multi-Modal 3D Grounding Dataset77

Existing 3D grounding datasets mainly target small, sensor-fixed indoor spaces, leaving outdoor,78

multi-platform scenarios underexplored. To bridge this gap, we curate 3EED, the first 3D grounding79
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White utility truck parked on the side, 
with its rear facing the camera. It is 
the second car counting from right.

Person riding a bicycle on the right 
side of the sidewalk, moving slowly, 
with three other riders in the front.

White car in the parking lot, viewed 
from an elevated angle, with three 
cars to its left and two to its right.

Stationary bus in rectangular shape is 
located in the center of the image, 
viewed from an elevated perspective.

Pedestrian sitting on a ledge in the 
back, observing the surroundings in 
what appears to be a skate park.

Pedestrian standing still on the left 
side of the image, facing the camera, 
with another person on the right side.

Figure 3: Examples of multi-platform 3D grounding from the 3EED dataset. There are clear
discrepancies across both sensory data (2D & 3D) and referring expressions from the Vehicle,

Drone, and Quadruped platforms. For additional examples, kindly refer to the Appendix.

dataset that unifies data from Vehicle, Drone, Quadruped platforms. We formalize the80

multi-modal, multi-platform 3D grounding task in Sec. 3.1, detail a two-stage annotation pipeline in81

Sec. 3.2, and present statistics that highlight the scale, diversity, and platform balance in Sec. 3.3.82

3.1 Task Formulation: 3D Grounding in the Wild83

We define the multi-platform 3D grounding task in our dataset as F(Pβ , Iβ , C) → bβ , where the84

model F maps input modalities, optionally including the point cloud Pβ = {pi}N
β

i=1, image Iβ , and85

caption C to the corresponding 3D bounding box bβ ∈ R7. Each point pi = (px, py, pz) ∈ R3, and86

the bounding box is given by its center, dimensions, and orientation angle. β denotes the platform,87

including the Vehicle, Drone, and Quadruped, and Nβ is the number of point clouds for88

platform β. To precisely quantify spatial relationships, we also define the bird’s-eye-view distance89

from target to ego-platform as ρ and the relative pitch angle as θr. In dataset curation and annotation,90

we explicitly consider platform-specific factors caused by inherent geometric differences.91

3.2 Dataset Curation & Annotations92

Multi-Platform 3D Data Annotation. We collect Vehicle sequences from Waymo [70], and93

Drone and Quadruped sequences from M3ED [11]. We adopt a uniform three-stage pipeline94

for the Drone/Quadruped LiDAR–RGB (see Fig. 2, left). 1) Pseudo-label seeding: State-of-the-art95

detectors [67, 68, 16, 94, 90, 87] trained on Waymo [70], nuScenes [8], and Lyft [26] produce96

platform-agnostic 3D boxes for every frame. 2) Automatic consolidation: Kernel-density estimation97

(KDE) merges detector votes, a 3D multi-object tracker [18] enforces temporal coherence and fills98

missed detections, and the Tokenize-Anything [57] model is used to project each box onto the RGB99

view to confirm its class; category conflicts are auto-flagged. 3) Human refinement: Annotators polish100

the flagged boxes in the user interface, cross-validating to equalize accuracy across platforms. This101

hybrid scheme yields consistent annotations while limiting manual effort to roughly 100s per frame.102

Referring Expression Data Annotation. After collecting the 3D boxes, we attach platform-invariant103

language supervision through a parallel procedure (see Fig. 2, middle). 1) Structured prompting:104

Each 3D box is projected onto its RGB view, together with a knowledge base with five template slots105

category, status, absolute location, egocentric position, relation, to a vision language model [74].106

Few-shot expression examples in the prompt are used to guide the model to output a single, well-107

formed referring sentence. Platform-specific terms are normalized by platform-invariant rewriting108

rules to ensure consistent wording across vehicle, drone, and quadruped views. 2) Human verification:109

Annotators inspect the image, projected box, and caption in an interactive UI, checking semantic110

correctness, spatial fidelity, absence of ambiguity, and platform-consistency. Cases that are unsatisfac-111

tory will be discarded. This staged pipeline delivers concise, unambiguous expressions across vehicle,112

drone, and quadruped views, providing high-quality language targets for 3D visual grounding.113
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Figure 4: Dataset statistics of the three platforms in 3EED. Left: Target bounding box distributions
in polar coordinates. Color intensity indicates the frequency of targets in each (ρ, θr) bin. Middle:
Scene distribution for train/val splits on each platform, along with per-scene object count histograms.
Right: Elevation distributions of input point cloud, pz , reflecting view-dependent elevation biases.

A person riding a bicycle on the right side 
of the road is to the right of a black SUV 
stopped at an intersection.

A silver sedan parked on the left side of 
the street is to the left of a white minivan 
parked on the right side of the street.

A person riding a bicycle on the right side 
of the road is to the right of a black SUV 
stopped at an intersection.

A person wearing a yellow backpack is 
crossing the street, slightly ahead of 
another person carrying a white bag.

A silver car driving on the right lane of the 
road is in front of a black van on the same 
lane, waiting in the traffic flow scenario.

A red car parked on the street near the 
sidewalk is larger than a blue motorcycle 
parked near the same sidewalk.

Figure 5: Examples of multi-object 3D grounding from the 3EED dataset. Given a scene and a
multi-object expression, the goal of this task is to localize the 3D bounding box of each referred
object by reasoning over both semantic attributes and inter-object spatial relationships.

3.3 Dataset Statistics & Analysis114

Benchmark Comparisons. 3EED is, to our knowledge, the first outdoor 3D visual grounding115

benchmark that standardizes sensing across three embodied platforms Vehicle, Drone, and116

Quadruped by using synchronized LiDAR–RGB acquisition. As summarized in Tab. 1, our dataset117

provides 134,143 object bounding boxes and 25,551 human-verified referring expressions over118

23,618 tightly time-aligned frames, focusing on the two safety-critical classes Vehicle and Pedestrian.119

Spatially, our scenes span up to 280m × 240m horizontally and exceed 80m in elevation, with120

an order of magnitude larger than any previous outdoor corpus, making it uniquely suited for studying121

long-range, cross-platform grounding. The train/val split is carefully balanced. As shown in Fig. 4122

(middle), containing 3.7k/3.1k vehicle, 5.9k/4.9k drone, and 3.3k/2.7k quadruped scenes, enabling123

rigorous analysis of both platform-specific challenges and cross-platform generalization.124

Platform-Specific Analysis. To illuminate how 3EED supports robust multi-platform downstream125

tasks, we dissect the sensing geometry and scene composition of each agent in three dimensions:126

1) Viewpoint geometry of targets: Fig.4 (left) shows the distribution of pitch angleθr and BEV127

range ρ for each 3D box. Vehicle data clusters at mid-range with near-zero pitch, typical of level128

driving. Drone covers larger ρ with steep negative θr from top-down views. Quadruped stays129

close in ρ but varies widely in pitch due to ground-level perspective. These patterns expose models to130

varied spatial cues like “behind” and “under”, improving generalization to novel viewpoints.131
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2) Per-platform object density: Fig. 4 (middle) shows object density per platform. Drone132

captures the busiest scenes due to its wide view, Vehicle records moderate density, and133

Quadruped sees fewer but closer objects. This range enables 3EED to test the ability to disambiguate134

crowded scenes, maintain situational awareness, and localize small, nearby targets – offering a135

challenging testbed for robust 3D grounding. 3) Input point-cloud geometry: Fig.4 (right) shows136

the vertical distribution of LiDAR points pz per platform. Vehicle scans center around the sensor137

height, Drone captures top-down views, and Quadruped looks upward toward obstacles.138

These elevation biases affect how spatial terms like “above” or “below” are grounded, offering rich139

vertical language diversity across viewpoints.140

4 Benchmark Establishment141

The scale and heterogeneity of 3EED, including the three embodied platforms, synchronized Li-142

DAR–RGB sensing, and densely annotated outdoor scenes, allow us to benchmark diverse grounding143

tasks: 1Single-platform, single-object grounding: follow the conventional setup and serve as a sanity144

check. 2Cross-platform transfer: train on the data-rich vehicle data and evaluate on the scarcer145

drone and quadruped data, reflecting real-world constraints where labeling drone or quadruped is146

costly yet generalization is crucial. 3Multi-object grounding: requires locating all described targets147

in a frame-crucial outdoors, where autonomous systems must track multiple objects rather than a148

single cup on a table. Fig. 5 illustrates several scenes that involve multiple objects. 4Multi-platform149

grounding: unified training on all platforms to build a general and robust grounding model.150

4.1 Challenges for Existing Methods151

Most 3D grounding models are designed for indoor RGB-D data, with dense, uniform points and152

small, consistent object sizes. On 3EED, they face three key challenges: 1) Range-dependent153

sparsity: LiDAR points thin out with distance, breaking indoor assumptions of dense neighborhoods.154

2) Extreme scale variation: Outdoor targets range from small cones to large vehicles, invalidating155

fixed-size anchors. 3) Cross-platform gaps: Different viewpoints and sensor heights cause shifts in156

density and field of view unseen in indoor settings. As we will illustrate in the next section, these157

challenges reveal the need for outdoor- and platform-aware model designs.158

4.2 Unified Cross-Platform Baseline159

To kick-start research on cross-platform transfer and multi-object grounding, we present a scale-160

adaptive and agent-invariant baseline model tailored to 3EED. It effectively addresses these challenges161

and serves as a strong reference point for future work in robust, general 3D visual grounding.162

Baseline Overview. We adapt previous work [31] to our dataset: a scale-adaptive PointNet++ [61]163

backbone encodes LiDAR, a frozen RoBERTa [46] encodes language, and a Transformer predicts164

every referenced 3D box in one shot. Training blends box-regression, token-alignment, and contrastive165

multimodal losses. In the multi-object grounding setting, each target object is associated with a166

distinct positive map. We apply Hungarian matching to assign each query to a specific target object,167

enabling supervised learning via one-to-one loss computation.168

Multi-Scale Sampling (MSS). Each PointNet++ layer gathers neighborhoods at radii from 0.6 m to169

4.8 m, dynamically capturing sharp local details nearby and broad contextual structure far away. This170

range-aware sampling effectively counters LiDAR sparsity and object-size extremes, thereby letting171

the backbone reliably localize both tiny traffic cones and massive buses.172

Scale-Aware Fusion (SAF). Backbone features from all radii are passed through a lightweight MLP173

that learns dynamic, per-point weights, thus strongly emphasizing whichever scale best explains the174

local geometry. SAF automatically adapts to dramatic density shifts across platforms, yielding highly175

scale-robust, agent-agnostic embeddings at essentially negligible computational cost.176
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Table 2: Benchmark results of state-of-the-art models on the 3EED dataset. The performances
are measured under both 1Single-platform and 2Cross-platform settings across three platforms:
Vehicle, Drone, and Quadruped. All scores are given in percentage (%).

Method Platform Vehicle Drone Quadruped Union
Adaptation Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50

• Training Platform: Vehicle
BUTD-DETR [31] ✗ 59.53 45.34 8.66 3.68 19.20 8.27 27.54 18.30

EDA [80] ✗ 60.47 51.34 9.03 4.12 12.91 6.85 27.26 20.40
Ours ✓ 67.81 65.03 18.84 13.03 35.29 27.10 39.17 33.43

Improve ↑ - +7.34 +13.69 +9.81 +8.91 +16.09 +18.83 +11.63 +13.03

• Training Platform: Drone
BUTD-DETR [31] ✗ 1.81 0.24 19.37 8.93 12.50 2.77 11.21 4.02

EDA [80] ✗ 2.59 0.19 22.01 14.31 9.17 2.13 12.59 6.70
Ours ✓ 11.30 1.43 23.00 16.32 17.18 4.23 17.45 8.21

Improve ↑ - +8.71 +1.19 +0.99 +2.01 +4.68 +1.46 +4.86 +1.51

• Training Platform: Quadruped
BUTD-DETR [31] ✗ 10.71 4.16 5.27 1.51 27.25 15.98 12.12 5.76

EDA [80] ✗ 9.32 4.06 7.52 2.16 25.26 18.60 12.25 6.09
Ours ✓ 21.68 9.11 9.39 5.13 37.76 28.59 19.99 12.05

Improve ↑ - +10.97 +4.95 +1.87 +2.97 +10.51 +9.99 +7,74 +5.96

• Training Platform: Union ( Vehicle + Drone + Quadruped)
BUTD-DETR [31] ✗ 55.50 42.01 24.01 16.83 37.84 27.07 37.29 26.66

EDA [80] ✗ 58.63 49.85 24.68 17.71 37.23 26.16 39.47 30.18
Ours ✓ 66.23 61.69 28.51 23.55 46.01 41.33 46.03 40.98

Improve ↑ - +7.60 +11.84 +3.83 +5.84 +8.17 +14.26 +6.56 +10.80

Cross-Platform Alignment (CPA). Before feature extraction, each scan is rotated to cancel roll and177

pitch, thus consistently aligning gravity with the global z-axis; drones additionally receive an altitude-178

normalizing height offset. This simple, one-shot normalization removes viewpoint bias, enabling179

models trained on vehicles to generalize smoothly to other agents without additional retraining.180

5 Experiments181

5.1 Experimental Setups182

Implementation Details. Our method is implemented in PyTorch, following the training schedule183

and optimization settings of previous work [31], but optimized for efficiency. Raw LiDAR from any184

platform is uniformly down-sampled to 16,384 points and encoded by a PointNet++ backbone [61]185

trained from scratch; its final layer yields 1,024 visual tokens. An MLP assigns each token an186

objectness score, and the top 256 tokens are input into a six-layer Transformer decoder. Objectness is187

supervised with focal loss by labeling the four nearest points to every ground-truth center as positives.188

We freeze RoBERTa, use a learning rate of 1× 10−3 for the visual encoder and 1× 10−4 for all other189

layers, and train for 100 epochs on two NVIDIA RTX 4090 GPUs. See Appendix for more details.190

Evaluation Metrics. Following [12, 1, 43], we report Top-1 Acc, counting a success when the top191

box exceeds a chosen IoU. We evaluate at Acc@25 (lenient) and Acc@50 (strict), and report mean IoU192

(mIoU) for overall quality. In multi-object setup, all objects must meet the IoU threshold, penalizing193

misses and false positives. Results are averaged over official train/val splits for fair comparison.194

Baselines. We adapt two representative baselines. EDA [80] is a prior art on indoor datasets by195

decoupling sentences into object, attribute, relation, and pronoun tokens, enforcing dense token-196

point alignment. However, it relies on dense scenes and grammar-consistent text, making it fragile197

under sparse LiDAR, large object-size variation, and diverse viewpoints. BUTD-DETR [31] uses198

a DETR-style decoder [9] with ScanNet box proposals and synthetic prompts but struggles on199

drone and quadruped data due to its dependence on indoor detectors. Neither baseline addresses200

range-dependent sparsity, scale variation, or cross-platform biases, motivating our scale-adaptive,201

agent-invariant baseline. Due to space limits, additional details are provided in the Appendix.202
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Table 3: Benchmark results of state-of-the-art models on the 3EED dataset. The performances
are measured under the multi-object setting on the Vehicle platform. We report the class-wise
performance on Acc@25, Acc@50, and mIoU metrics. All scores are given in percentage (%).

Method Car Pedestrian Average
Acc@25 Acc@50 mIoU Acc@25 Acc@50 mIoU Acc@25 Acc@50 mIoU

BUTD-DETR [31] 30.92 19.83 52.39 26.56 18.75 37.28 25.40 17.91 47.88
EDA [80] 29.58 26.21 56.73 28.15 14.75 38.37 26.91 25.92 51.07

Ours 37.21 33.14 59.28 32.81 20.31 54.21 32.32 29.89 56.40

Improve ↑ +7.63 +14.63 +6.89 +4.66 +1.56 +15.84 +5.41 +3.97 +5.33

Table 4: Ablation study on components. The
performances are measured under the multi-
platform setting. SAF: The scale-aware fusion
module. MSS: The multi-scale sampling method.

Method Vehicle Drone Quadruped
Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50

Base 55.50 42.01 24.01 16.83 37.84 27.07
− MSS 61.34 50.21 24.85 19.73 43.53 30.69
− SAF 63.45 56.75 28.24 22.94 45.42 40.98
Full 66.23 61.69 28.51 23.55 46.01 41.33

Table 5: Ablation study on scene complexity.
The performances are measured under the multi-
platform setting. Here, we split scenes based on
the number of objects per scene.

Object Vehicle Drone Quadruped
Count Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50

1− 3 70.86 65.42 42.53 33.63 57.51 50.69
4− 6 64.82 59.71 39.71 33.73 35.45 33.57
7− 9 52.48 47.77 27.84 24.88 28.26 23.37
> 9 58.11 55.41 18.16 15.66 0.00 0.00

5.2 Comparative Study203

Cross-Platform Generalization. Tab. 2 compares existing 3D grounding backbones under in-204

distribution (single-platform) and out-of-distribution (cross-platform) settings.205

1) Single-Platform vs. Cross-Platform. When trained on Vehicle data, BUTD-DETR [31]206

achieves Acc@25 of 59.53 on the vehicle test split, but drops to 8.66 on drone and 19.20 on quadruped,207

exposing severe generalization gaps due to differing viewpoints, object scales, and LiDAR densities.208

2) Cross-Platform Transfer Gains. Our scale-adaptive backbone with platform alignment substantially209

narrows this gap. For example, training on Drone and evaluating on Vehicle boosts Acc@25210

by +8.71 over the baseline, demonstrating stronger transfer from aerial to ground perspectives.211

3) Unified Multi-Platform Training. A unified model trained jointly on all three platforms delivers212

balanced performance, with Acc@25 of 66.23, 28.51, and 46.01 on vehicle, drone, and quadruped,213

respectively, yielding an average gain of +6.56 over the best method. This confirms the critical role214

of 3EED in providing diverse supervision for building truly generalizable 3D grounding systems.215

Coherent Object Co-grounding. Tab. 3 presents the evaluation results on our dataset for the multi-216

object grounding task. Notably, in this setting, Acc@25 is a strict metric that requires all objects217

mentioned in the description to be correctly grounded, while mIoU captures the average IoU across218

individual predicted-ground truth pairs. Existing methods such as BUTD-DETR achieve moderate219

mIoU (47.88) but low joint grounding (Acc@25 = 25.40), revealing their tendency to localize objects220

in isolation rather than reason about them collectively. In contrast, our baseline leverages multi-scale221

sampling and dynamic feature fusion to build discriminative representations that capture both fine222

details and broad context, essential for disambiguating multiple objects of varying size and distance.223

These design choices deliver substantial improvements in both metrics, demonstrating markedly224

stronger multi-object reasoning and tighter language-to-3D alignment in complex outdoor scenes.225

Qualitative Assessments. Fig. 6 showcases representative multi-platform grounding results on226

vehicle, drone, and quadruped data. Our unified model consistently outputs precise, tightly aligned227

3D boxes despite drastic shifts in viewpoint, object scale, and point-cloud density. In contrast, baseline228

methods like BUTD-DETR [31] and EDA [80] often yield misaligned or fragmented predictions,229

especially under challenging aerial and low-angle quadruped perspectives. These comparisons230

underscore our ability to learn genuine cross-platform invariance and deliver reliable grounding231

across diverse embodied sensing scenarios.232
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Silver sedan driving on the road, 
near the center of the image, 
with its rear facing the viewer.

Stationary bus in rectangular 
shape, viewed from an elevated 
perspective, surrounded by trees.

Pedestrian stands on the right 
side, facing away from viewer 
and near a graffiti-covered wall.

Input BUTD-DETR EDA Ours

IoU: 0.00 IoU: 48.03 IoU: 80.21

IoU: 67.57IoU: 17.38IoU: 39.42

IoU: 82.10 IoU: 60.40 IoU: 85.05

Figure 6: Qualitative comparisons of 3D grounding approaches on the 3EED dataset. We show
the comparisons under the multi-platform setting. The three examples are from the Vehicle,
Drone, and Quadruped platforms, respectively. Kindly refer to the appendix for additional results.

Table 6: Comparisons of platform-level 3D grounding statistics. We report the average number of
annotated objects per scene and LiDAR points per object. All scores are given in percentage (%).

Platform Average Average Vehicle Drone Quadruped
#Objects / Scene #Points / Object Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50

Vehicle 4.74 1452.83 67.81 65.03 18.84 13.03 35.29 27.10
Drone 8.57 93.27 11.30 1.43 23.00 16.32 17.18 4.23

Quadruped 3.36 207.25 21.68 9.11 9.39 5.13 37.76 28.59

5.3 Ablation Study233

Component Analysis. Tab. 4 presents an ablation of our two core modules. MSS alone raises234

Vehicle Acc@25 from 55.50% to 61.34% (+5.84%), while SAF alone achieves 63.45%, confirming235

their complements. MSS samples neighborhood radii from a larger range, capturing both fine local236

edges and broad context to mitigate LiDAR sparsity and object-size variation. SAF fuses multi-scale237

features through a lightweight MLP that learns per-point weights, highlighting the most informative238

scale and adapting to dramatic density shifts. Together, they deliver the strongest overall performance.239

Object Density Impact. We analyze how referential grounding performance varies with the object240

density per scene. We divide test samples into bins based on the number of annotated 3D bounding241

boxes (1-3, 4–6, 7–9, 10+), and compute the average Acc@25 for each bin. As shown in Tab. 5,242

accuracy consistently drops as object count increases. On the Vehicle platform, Acc@25 drops243

from 70.86 in scenes with 1–3 objects to 52.48 in scenes with 7–9 objects. This reflects the increased244

difficulty of resolving referential ambiguity in cluttered environments.245

Platform Complexity Impact. Tab. 6 breaks down grounding performance by platform alongside246

two key scene statistics: mean LiDAR points per object and mean object count per scene. Drone247

scenes suffer the lowest Acc@50, driven by extreme sparsity (just 93 points/object vs.1,452 for248

Vehicle and 207 for Quadruped) and the highest object density (8.57 objects/scene), which249

together amplify distractors and hinder precise localization. Quadruped data, with moderate density250

(207 points/object) but fewer objects, sits between drone and vehicle performance. These disparities,251

including ultra-sparse returns and elevated clutter, explain the pronounced aerial performance gap.252
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6 Conclusion253

We introduced 3EED, a large-scale, multi-platform, multi-modal benchmark for outdoor 3D visual254

grounding, featuring 134,000 objects and 25,000 expressions, which is 10× larger than existing255

datasets. We proposed scalable annotation, platform-aware normalization, and cross-modal alignment256

to support robust grounding. Our benchmark reveals cross-platform performance gaps, highlighting257

challenges for generalizable 3D grounding. We release our dataset and baseline models, hoping to258

advance the future development of language-driven embodied 3D perception.259
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A The 3EED Dataset569

In this section, we provide a comprehensive overview of the 3EED dataset, including its motivation,570

collection methodology, and unique characteristics. We describe the design choices made to ensure571

diversity in sensor platforms, scene composition, and language annotation, and highlight the potential572

to support research in 3D visual grounding across real-world embodied platforms.573
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Table 7: Statistics of the 3EED dataset across platforms and splits.

Platform # Scenes # Captions # Objects

Training
Vehicle 3,676 4,380 14,042

Quadruped 3,263 3,259 10,510

Drone 5,892 5,827 44,193

Total 12,831 13,466 68,745

Validation
Vehicle 3,148 4,447 14,051

Quadruped 2,708 2,707 9,107

Drone 4,931 4,931 42,240

Total 10,787 12,085 65,398

Summary 23,618 25,551 134,143

A.1 Overview574

Our dataset is built on top of two existing autonomous driving and robotics datasets: Waymo Open575

Dataset [70] and M3ED [11]. Our dataset includes point cloud and image data collected from three576

distinct embodied platforms – Vehicle, Drone, and Quadruped – capturing scenes from577

street-level, aerial, and low-ground perspectives, respectively. The referring expressions are generated578

by Qwen-VL-72B [74], covering five aspects: category, status, absolute location, egocentric position,579

and spatial relation, with human verification.580

The full dataset contains 23,618 multi-modal scenes, 25,551 referring expressions, and 134,143581

annotated 3D object instances across three sensor platforms. The training set consists of 12,831582

scenes, with 13,466 captions and 68,745 objects, while the validation set includes 10,787 scenes,583

12,085 captions, and 65,398 objects.584

Breaking down by platform: the Vehicle split provides 6,824 scenes and 28,093 objects; the585

Quadruped split includes 5,971 scenes and 19,617 objects; and the Drone split contributes the586

largest portion with 10,823 scenes and 86,433 objects. This distribution reflects the platform diversity587

and scale of our dataset, supporting cross-platform and cross-viewpoint grounding evaluation.588

This cross-platform, cross-viewpoint composition allows our dataset to serve as a unified benchmark589

for 3D grounding under varying spatial configurations, sensor geometries, and linguistic descriptions.590

It enables the evaluation of platform-agnostic language understanding in real-world conditions.591

A.2 Dataset Curation Details592

This section details the data sourcing, 3D bounding box annotation pipeline, and referring expression593

generation process used to construct the 3EED dataset. We describe how annotated 3D boxes are594

curated across platforms using a combination of pretrained detectors, tracking, and manual refinement,595

and how language expressions are generated and verified to ensure grounding quality and consistency596

across scenes.597

A.2.1 Data Sources598

The dataset is built on top of two large-scale real-world 3D perception datasets: Waymo Open599

Dataset [70] and M3ED [11].600

Waymo Open Dataset [70] provides high-resolution LiDAR and RGB data collected from vehicle-601

mounted sensors in urban and suburban driving environments. We use a subset of Waymo annotated602
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scenes to construct the Vehicle portion of our dataset, leveraging its high-quality 3D bounding603

boxes as ground truth. Our annotations are built independently on top of their publicly available604

sequences.605

M3ED Dataset [11] is a multi-platform dataset, featuring synchronized RGB and LiDAR streams606

from both quadruped robots and aerial drones operating in various outdoor scenes. The Drone607

and Quadruped portions of our dataset are derived from M3ED. Since M3ED does not contain608

pre-annotated 3D bounding boxes, we adopt a semi-automatic annotation pipeline that combines609

multiple pretrained detectors, trajectory tracking, and human refinement to generate high-quality 3D610

boxes.611

A.2.2 Annotation Details on 3D Bounding Boxes612

The 3D bounding box annotations in 3EED are obtained through a combination of high-quality613

existing labels and a carefully designed cross-platform annotation pipeline.614

Vehicle Platform. For the Vehicle platform, we adopt 3D object annotations directly from the615

official Waymo Open Dataset [70], which provides dense, high-accuracy bounding boxes for traffic616

participants such as vehicles, pedestrians, and cyclists etc.. These annotations are widely regarded as617

reliable and are used without further modification.618

Drone and Quadruped Platforms. For the Drone and Quadruped platform, the original619

M3ED Dataset [11] does not contain pre-annotated 3D bounding boxes and require custom 3D620

bounding box annotations. We establish an annotation pipeline introduced in Figure 2 of the main621

paper. The process is composed of three stages:622

• Pseudo-label seeding. We first pretrain a diverse set of state-of-the-art 3D detectors: PV-623

RCNN [67], PV-RCNN++ [68], Voxel-RCNN [16], IA-SSD [94], CenterPoint [90], and624

SECOND [87], on large-scale external datasets (e.g., Waymo [70], nuScenes [8], Lyft [26]).625

These models are then used to infer pseudo-labels on our data, covering a variety of sensor626

configurations and scene layouts.627

• Automatic consolidation. To consolidate predictions, we apply a kernel density estimation628

(KDE) approach to fuse overlapping boxes and improve consistency. A 3D multi-object629

tracking algorithm (CTRL [18]) is used to propagate detections over time and interpolate630

missing instances. To further validate category correctness, we employ the Tokenize Any-631

thing model [57] to project pseudo-boxes onto RGB images and cross-check the detected632

objects with open-vocabulary tags (see Figure 7). Boxes with mismatched semantics are633

flagged for review, reducing semantic drift across modalities.634

• Human refinement. Finally, we manually refine each box on a per-frame basis. Three trained635

annotators iteratively verify, correct, and cross-validate all annotations to ensure high-quality636

outputs. Despite the assistance from automation, the sparsity and noise of real-world point637

clouds require human oversight.638

This multi-stage toolkit integrates detection, filtering, image-level verification, and annotation inter-639

faces. It enables scalable and accurate labeling for mobile platforms where no prior annotations exist,640

contributing to the high consistency and realism of our dataset.641

A.2.3 Annotation Details on Referring Expressions642

To evaluate grounding performance under natural and unambiguous language, we annotate referring643

expressions for each 3D bounding box in our dataset. These expressions are designed to support both644

single-object and multi-object grounding across diverse platforms, and are generated via a hybrid645

automatic–manual pipeline.646

Generation with Vision-Language Models. We use the Qwen-VL-72B [74] vision-language model647

to automatically generate initial referring expressions. For each annotated 3D bounding box, we first648

project it onto the corresponding RGB image frame, then provide both the image and a task-specific649
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Figure 7: Automatic pseudo-label screening interface powered by the Tokenize Anything model.

prompt to the model. The prompts are carefully designed to guide the model to produce detailed,650

visually grounded, and unambiguous expressions.651

For the single-object grounding setting, we use a structured prompt (see Table 8) that elicits descrip-652

tions covering the object’s class, status, absolute position, spatial relationships, and motion. For the653

multi-object grounding setting, we adopt a more compositional prompt (see Table 9) that encour-654

ages descriptions of two objects and their semantic relationships in temporal 3D scenes, covering655

appearance, motion, and relative spatial configuration.656

Manual Verification and Filtering. All generated referring expressions undergo human verification657

to ensure semantic correctness, referential clarity, and linguistic fluency. To facilitate this process,658

we develop a custom annotation interface, as shown in Figure 8. Annotators review each expression659

in the context of the full scene, with the target object visualized via its projected 3D bounding box660

overlaid on the RGB image. If an expression is partially inaccurate or omits essential details, it661

may be directly edited. If the description is fundamentally flawed – such as containing hallucinated662

attributes or being referentially ambiguous – the sample is discarded. This verification process is663

conducted by a team of five trained annotators to ensure consistency and overall annotation quality.664

Platform-Aware Annotation Alignment. To support fair and consistent evaluation across diverse665

platforms, we adopt a unified annotation protocol for Vehicle, Drone, and Quadruped666

scenes. Specifically, the same instruction prompt is used across all platforms, ensuring that the667

generation process follows identical linguistic and visual grounding expectations, regardless of the668

underlying sensor configuration or viewpoint.669

All spatial descriptions in referring expressions are written from the observer’s perspective, i.e.,670

relative to the camera view that captured the scene. This design allows language like “on the671

left”, “facing away”, or “in the front” to remain intuitive and unambiguous to models operating on672

image-grounded or LiDAR-centered input. Rather than using global scene-relative coordinates (e.g.,673

“north-east corner”), we ensure all position statements are grounded in the visual evidence available674

from the sensor’s viewpoint.675

A.3 Examples of Single-Object 3D Grounding676

Figure 9, Figure 10, and Figure 11 present representative examples of single-object 3D grounding677

from the Vehicle, Drone, and Quadruped platforms in our dataset. Each example displays678

the fused RGB image and LiDAR point cloud, along with a natural language referring expression and679

its corresponding 3D bounding box.680

These examples highlight several key characteristics of the 3EED dataset:681

4



Table 8: Prompt for Single-Object Grounding

You are an assistant designed to generate fine-grained descriptions for 3D objects
grounded in images.

Given a single object highlighted by a bounding box and its class label, please generate a
detailed and unambiguous description focusing on the following aspects:

• 1. Class: Specify the object’s type and visual features (e.g., color, shape, vehicle
model, clothing of pedestrians).

• 2. Status: Indicate whether the object is static or in motion, and describe its speed
or behavioral state.

• 3. Absolute Position: Describe the object’s location within the image (e.g., bottom-
left, center).

• 4. Viewer Perspective: Explain the object’s orientation relative to the camera or
viewer (e.g., facing the camera, viewed from behind).

• 5. Spatial Relations: Outline how the object is situated relative to nearby elements
in the scene.

• 6. Moving Direction (if applicable): Specify whether the object is moving toward
or away from the viewer, or turning in a particular direction.

After addressing each aspect, compose a fluent summary sentence (less than 100 words)
that uniquely identifies the object within the scene.

Response Format:
1. class: [...]
2. status: [...]
3. position in the image: [...]
4. relation to the viewer: [...]
5. relationships with other objects: [...]
6. moving direction: [...]
7. Summary: [complete descriptive sentence]

Important: Your description should be as specific and detailed as possible. Ensure the
response is uniquely aligned with the given object and avoids ambiguity.

• Cross-platform diversity. Vehicle scenes often feature structured road layouts with682

multiple traffic participants, such as cars, pedestrians, and motorcycles. Drone scenes683

offer wide-area top-down coverage with more cluttered object distributions, including684

overlapping vehicles, elevated viewpoints, and richer spatial context. Quadruped scenes685

are recorded from a low-altitude, ground-level perspective, focusing on close-range human686

interactions and sidewalk-level details.687

• Natural language variation. Referring expressions reflect platform-specific visibility and688

spatial reasoning. For example, Vehicle -mounted viewpoints encourage descriptions689

like “on the left side of the street”, while Drone-based annotations describe objects690

“in the upper right quadrant” or “viewed from above”. Quadruped expressions capture691

nuanced positional cues (e.g., “facing the camera”, “walking away on the path”) and often692

describe subtle behaviors or clothing.693

• Scene conditions. Our dataset includes scenes captured under diverse environmental condi-694

tions, including both daytime and nighttime settings. This is evident in the Vehicle and695

Drone examples, where objects may be illuminated by streetlights or appear in low-light696

settings, adding realism and complexity to the grounding task.697
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Table 9: Prompt for Multi-Object Grounding

You are a multimodal assistant tasked with describing and comparing two objects in a
temporal 3D scene.

You are provided with a sequence of images where two objects are marked with green
bounding boxes. You will also be given:

• The class label of each object
• A predefined semantic relationship between them

Your task is to describe each object individually, and then articulate the relationship between
them. Ensure your descriptions are precise, grounded in visual evidence, and cover the
following perspectives:

• 1. Appearance: Describe the object’s color, texture, size (small, medium, large),
shape, category, and material.

• 2. State: Specify whether the object is moving or static, and describe its current
action (e.g., turning, accelerating).

• 3. Spatial Relationship: Explain its location and relation to nearby scene elements.
• 4. Temporal Movement: Summarize how the object’s position changes across the

image sequence.
• 5. Other: Include any other details that can aid recognition.

Then, describe the relationship between the two objects based on their relative spatial
or temporal behavior (e.g., “the car is overtaking the cyclist”, “the robot is approaching the
chair”).

Response Format:
Object A:
1. appearance: [...]
2. state: [...]
3. spatial relationship: [...]
4. temporal movement: [...]
5. other: [...]

Object B:
1. appearance: [...]
2. state: [...]
3. spatial relationship: [...]
4. temporal movement: [...]
5. other: [...]

Relationship: [description of how Object A relates to Object B]

Important: Focus only on the two marked objects. Your response must be detailed and
unambiguous, and should accurately reflect both visual and temporal information.

• Multi-modal alignments. Despite differences in viewpoint and density, all annotations698

maintain strong visual-language grounding. Each expression unambiguously describes a699

target object with sufficient detail for model disambiguation, including appearance, position,700

context, and motion when applicable.701

These examples demonstrate the richness and difficulty of grounding in our dataset: models must702

generalize across platforms, lighting conditions, and spatial perspectives while maintaining consistent703
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Figure 8: Graphical user interface used during the human refinement phase. Annotators inspect each
scene by viewing the 3D bounding box projected onto the RGB image, alongside the automatically
generated referring expression. Annotators verify or revise the description to ensure it uniquely and
accurately identifies the target object. Scenes failing this verification are discarded.

language understanding. The platform-aware yet prompt-consistent annotation pipeline ensures704

comparability while preserving diversity.705

A.4 Examples of Multi-Object 3D Grounding706

Figure 12 presents representative examples from the multi-object grounding subset of our dataset. In707

this setting, each scene contains two target objects annotated with distinct 3D bounding boxes and708

described through interrelated referring expressions. These expressions not only characterize each709

object individually (e.g., class, appearance, motion), but also explicitly capture their spatial, temporal,710

or semantic relationships.711

The examples span a variety of real-world outdoor scenarios involving pedestrians, cyclists, and712

vehicles. Referring expressions encode rich visual-semantic grounding cues, such as:713

• Relative positioning: “in front of”, “to the right of”, “ahead of”, “shorter than”.714

• Comparative reasoning: “is larger than”, “is taller than”, “is shorter than”.715

• Temporal context and motion state: “driving on the road”, “stopped at the traffic light”,716

“moving forward”.717

A.5 Statistics and Analyses718

In this section, we present detailed statistics and analyses that characterize the 3EED dataset across719

platforms and splits. We examine the distribution of scene complexity, defined by the number720

of annotated objects per scene, and show how this varies significantly between the Vehicle,721

Drone, and Quadruped platforms. Additionally, we analyze point-level density within 3D722
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There is a person standing near a trash bin on the sidewalk, 
wearing shorts and a tank top, with a backpack slung over 
the shoulder. There is another person walking on the right.

There is a person wearing an orange shirt and green pants 
walking slowly on the sidewalk, looking at the phone. There 
are two other pedestrian on the right hand side.

There is a black car parked on the side of the street, near a 
building with illuminated windows. It is to the rear of a 
sliver car, which is also parked on the side.

There is a blue motorcycle parked on the right sidewalk, 
near a red car, with its front facing the street.

There is a silver pickup truck driving on the left side of the 
road, approaching an intersection. From the viewer’s 
aspect, it is the first car on the left side.

There is a red car parked on the left side of the street, with 
its headlights on, indicating it might be preparing to move. 
There are parked cars near it.

There is a blue Mini Cooper parked in the parking lot, 
surrounded by other vehicles. There are two light-colored 
cars parked near it, to its left.

There is a white van parked in front of a house, with its rear 
lights visible and appearing to be stationary. There are 
some other cars parked beside it, on its left.

Figure 9: Additional examples of 3D grounding from the Vehicle platform in 3EED dataset.
The data shown include the LiDAR point clouds, the RGB frames, and the associated referring
expressions. Best viewed in colors and zoomed in for more details.

bounding boxes, highlighting strong differences in LiDAR sampling resolution across platforms.723

These statistics provide important context for interpreting grounding performance and understanding724

platform-specific challenges in 3D perception and language grounding.725

A.5.1 Scene Complexity Statistics across Platforms726

Table 10 presents detailed statistics of the training and validation splits across the three platforms727

in the 3EED dataset – Vehicle, Drone, Quadruped platforms. Each scene is categorized728

by the number of objects it contains, providing insight into the distribution of scene complexity.729

These statistics are collected on the single-object grounding subset, where only one referred object is730

annotated per scene.731

We observe that Quadruped scenes are predominantly sparse, with over 95% of both training and732

validation scenes containing fewer than 4 objects. Such low-density settings simplify the localization733

task and reduce ambiguity during reference resolution. In contrast, Drone data features a much734

higher proportion of crowded scenes: over 55% of the training scenes and 60% of the validation735

8



A black SUV is parked stationary in the upper left quadrant 
of the image, viewed from an elevated angle, surrounded 
by trees and grassy areas, and parked next to a white car.

A dark-colored car is parked stationary in a designated 
parking spot in the upper right quadrant of the image, 
viewed from a slightly elevated angle, next to a white car.

A metallic silver sedan is parked in a parking spot, located 
towards the upper middle portion of the image, viewed 
from a distance, surrounded by trees casting shadows.

A black SUV is parked stationary in the middle-right section 
of the image, viewed from an elevated angle, surrounded 
by other parked cars and near a grassy area with trees.

A white SUV is parked stationary in the upper middle 
portion of the image, viewed from an elevated angle, 
surrounded by other parked vehicles and trees.

A white car with a visible license plate and sunroof is 
parked stationary in a designated parking spot, surrounded 
by other vehicles, and viewed from a side angle.

A dark red SUV is parked at a crosswalk in the center-right 
of the image, viewed from a slightly elevated angle, with a 
white van to its left and a fence and trees in the background.

A pedestrian, dressed in a light-colored shirt and dark 
pants, stands stationary near a vehicle, with the back 
turned to the viewer, while a robot dog runs nearby.

Figure 10: Additional examples of 3D grounding from the Drone platform in 3EED dataset.
The data shown include the LiDAR point clouds, the RGB frames, and the associated referring
expressions. Best viewed in colors and zoomed in for more details.

scenes contain 7 or more objects. This reflects the broader aerial perspective and wider field of view,736

which captures more complex environments and increases grounding difficulty.737

The Vehicle platform lies between the two, exhibiting a relatively balanced distribution of scene738

complexities. This makes Vehicle data a valuable middle ground for learning models that generalize739

across both sparse and dense settings.740

Overall, these statistics highlight the diverse spatial configurations in our dataset and provide context741

for the performance variations discussed in the experiment section of the main paper, particularly in742

the cross-platform grounding evaluation.743

A.5.2 Box Density Statistics744

Figure 13 illustrates the distribution of 3D bounding boxes by the number of LiDAR points contained745

within each box, across the three platforms. The Drone platform features extremely sparse boxes,746

with over 60% containing fewer than 100 points. This is a result of its high-altitude viewpoint and747

long-range perception, which leads to sparser spatial sampling. Conversely, the Vehicle platform748
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A man wearing a brown top, shorts, and a cap stands on a 
skateboard in the foreground, facing the camera directly, 
near a graffiti-covered wall and other skateboarders.

A pedestrian, dressed casually with a backpack, is walking 
away from the viewer along a path that leads towards a 
bridge or overpass, surrounded by other distant pedestrians.

A pedestrian is standing on the left side of a path, facing 
the camera with their body slightly turned to the right, 
surrounded by trees and greenery.

A stationary Hyundai SUV is parked on the right side of 
the image, near the edge of the road and surrounded by 
trees, with vehicles and pedestrians in the background.

A pedestrian, dressed in a dark shirt and light pants, stands 
still on the left side of the image, near the top of a staircase, 
facing away from the viewer towards a large building.

A pedestrian dressed in a light-colored top and dark pants 
is walking on the right side of the image, near a lamp post 
and a fence, with another person visible in the background.

A white compact hatchback car is parked stationary in the 
middle-left portion of the image, surrounded by trees and 
grass, with pedestrians nearby on a sidewalk.

A person dressed in a white t-shirt and dark pants stands  
on a skateboard in the center of the image, facing the 
camera, with a wall of graffiti and trees in the background.

Figure 11: Additional examples of 3D grounding from the Quadruped platform in 3EED dataset.
The data shown include the LiDAR point clouds, the RGB frames, and the associated referring
expressions. Best viewed in colors and zoomed in for more details.

has more than 28% of boxes with over 900 points, reflecting the dense coverage typical in street-level749

LiDAR. The Quadruped platform occupies a middle ground but still exhibits noticeable sparsity,750

with a third of its boxes containing fewer than 100 points.751

These density differences strongly affect 3D feature quality and grounding performance, especially in752

low-point regimes where accurate object localization becomes more challenging.753

A.6 License754

The 3EED dataset and its associated toolkit are released under the Attribution-ShareAlike 4.0755

International (CC BY-SA 4.0)1 license.756

1https://creativecommons.org/licenses/by-sa/4.0/legalcode.

10

https://creativecommons.org/licenses/by-sa/4.0/legalcode


A yellow taxi cab driving on the street is shorter than a 
woman walking on the sidewalk carrying a handbag.

A yellow taxi cab driving on the street is shorter than a 
woman walking on the sidewalk carrying a handbag.

A yellow taxi cab driving on the street is shorter than a 
woman walking on the sidewalk carrying a handbag.

A silver sedan with its brake lights on is shorter than a 
black SUV ahead of it, both driving on the same lane.

A black SUV with its brake lights on is taller than a silver 
sedan on its right, stopped at the same traffic light.

A person riding a bicycle on the left side of the street is to 
the left of a white car parked near the curb.

A black SUV driving on the road is in front of a man
standing on the back of a large flatbed truck.

A large white truck with green and orange branding is right 
of a silver pickup truck driving on the road.

A silver sedan parked on the right side of the street is in 
front of a white van driving down the road.

A black SUV with its brake lights on is larger than a blue 
sedan on its right side, also stopped at the traffic light.

A red car is stopped at an intersection, positioned to the 
right rear of another vehicle that is moving forward.

A cyclist wearing a backpack and riding a bicycle is to the 
right of a person standing near a bus stop.

Figure 12: Additional examples of multi-object 3D grounding from the 3EED dataset.

B Benchmark Construction Details757

In this section, we describe how we construct benchmark settings for evaluating 3D language758

grounding using our dataset. All tasks are formulated in a proposal-free setting, where models must759

directly predict 3D bounding boxes from point clouds and referring expressions. We also detail the760

baseline models, training configurations, and evaluation metrics used throughout our experiments.761

11



Table 10: Scene count grouped by number of objects per scene across platforms and splits.

Platform 1–3 4–6 7–9 10+ Total

Training
Vehicle 1,373 1,058 387 208 3,026

Drone 1,292 1,361 1,631 1,608 5,892

Quadruped 1,886 1,377 0 0 3,263

Total 4,551 3,796 2,018 1,816 12,181

Validation
Vehicle 1,290 1,013 433 229 2,965

Drone 911 1,034 846 2,140 4,931

Quadruped 1,690 834 184 0 2,708

Total 3,891 2,881 1,463 2,369 10,604

Summary 8,442 6,677 3,481 4,185 22,785

Our goal is to enable fair, controlled, and reproducible comparison across grounding tasks with762

varying spatial and linguistic complexity.763

B.1 Single-Object Grounding Baselines764

We compare our approach against two 3D visual grounding baselines adapted to the outdoor point765

cloud domain: BUTD-DETR [31] and EDA [80]. Both models were originally proposed for766

grounding in 3D indoor scenes [15], and we adapt them to our benchmark with raw point cloud input.767

In all comparisons, we follow a unified setting that does not rely on pre-computed object proposals;768

each model directly predicts 3D bounding boxes from the raw point cloud and query language.769

BUTD-DETR [31] is a transformer-based grounding model that fuses top-down language cues770

and bottom-up visual features for referential localization. In our setting, we remove the use of771

region proposals entirely and adapt the model to operate on raw point clouds. The point cloud is772

encoded using a PointNet++ backbone [61], producing a sequence of 3D-aware visual tokens. The773

language input is processed by a frozen RoBERTa-base encoder [46], generating contextualized774

word embeddings. The encoder module uses separate self-attention and cross-attention layers to775

jointly process language and visual streams. The decoder is composed of transformer layers, where776

non-parametric queries are derived from the top-K visual tokens based on confidence scores. Each777

query outputs a 3D bounding box via a regression head that predicts box center and size relative778

to the anchor point. It supervises the model using a Hungarian matching algorithm that assigns779

queries to ground-truth boxes. We retain the original box regression and token-level soft alignment780

loss. The contrastive loss is also included, with a symmetric formulation that aligns all predicted781

queries to token embeddings and vice versa, following their not-mentioned augmentation strategy for782

unmatched queries.783

EDA [80] decomposes each language query into semantic components and explicitly aligns them with784

point-level features. The model uses the same point encoder as BUTD-DETR [31]. The language785

input is encoded via a frozen RoBERTa-base model and parsed into three components: object type,786

visual attributes, and spatial relations. Each component attends to the point features via separate787

alignment branches, predicting soft attention masks over the point cloud. The decoder aggregates788

these aligned components through cross-attention and predicts the final 3D bounding box via a789

regression head. The model is trained with a combination of L1 and GIoU losses for box prediction,790

along with a multi-branch semantic alignment loss that supervises the consistency between each791

language component and its corresponding spatial region.792
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Figure 13: Distribution of 3D boxes by number of points contained in each box, across
Vehicle, Drone, and Quadruped platforms. Drone boxes are significantly sparser, while
Vehicle boxes are generally denser, indicating strong variations in point cloud density across platforms.

B.2 Multi-Object Grounding Baselines793

We extend the single-object grounding paradigm to handle multiple objects. Given a natural language794

utterance and a 3D scene, the model aims to localize all target objects referred to in the input. The795

core challenge lies in resolving the correspondence between multiple referred entities and their textual796

descriptions within the utterance.797

To address this, we construct a token-level association map that aligns each target object to its798

corresponding span in the language input. Each object is linked to a binary mask over the token799

sequence, indicating which words describe it. These masks are normalized to ensure balanced800

supervision across all objects during training.801

Hungarian matching is used to assign predictions to ground-truth boxes. In the single-object case,802

each scene involves a single reference box. In the multi-object case, matching is performed for each803

target object separately, with losses computed and averaged across targets.804

During inference, the model processes a single utterance that refers to multiple target objects. For each805

object, we compute the semantic similarity between the candidate boxes and the relevant language806

span, and select top-ranked boxes based on these similarity scores.807

B.3 Implementation Details808

Encoder-Decoder. Our model processes raw LiDAR point clouds, which are uniformly downsampled809

to 16, 384 points per scene. The point cloud is encoded using a four-layer point-based encoder with810

multi-scale sampling (MSS) and semantic-aware fusion (SAF) modules. The model is trained811

from scratch without any pretraining. The radius settings for MSS are [[0.2, 0.8], [0.8, 1.6],812

[1.6, 3.2], [1.6, 4.8]]. Text features are extracted using a frozen RoBERTa-base [37] model, and813

projected to a 288-dimensional space via a linear projection layer to match the point cloud feature814

dimension. Language and visual tokens interact through three layers of bidirectional cross-attention.815

A total of 1, 024 keypoints are sampled from the output of the cross-attention encoder and used as816

input queries to the decoder. The decoder consists of six transformer layers that iteratively refine 3D817

box predictions. All boxes are predicted directly from point cloud and language input.818

Loss Function. During training, predictions are matched to ground-truth boxes via Hungarian819

matching as DETR [10], using a cost that combines box ℓ1 distance, 3D generalized IoU [64], and a820
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soft token-level classification score. The model is supervised using a combination of classification821

loss, box regression loss, GIoU loss, and a contrastive alignment loss. The contrastive loss is822

computed between projected visual queries and language tokens using temperature-scaled cosine823

similarity, with supervision applied in both query-to-token and token-to-query directions. All losses824

are applied at the decoder outputs.825

Training Details. We use AdamW for optimization. For single-object grounding, the learning rate is826

set to 1× 10−3 for the point encoder and 1× 10−4 for all other modules. Training is conducted for827

100 epochs on two NVIDIA RTX 4090 GPUs (24 GB each), with a batch size of 12 per GPU. For828

multi-object grounding, the learning rate is set to 1× 10−4 for all modules. Training is conducted for829

200 epochs on a single RTX 4090 GPU, also with a batch size of 12.830

B.4 Evaluation Metrics831

To assess grounding performance, we adopt standard IoU-based metrics including Acc@δ and mean832

IoU (mIoU).833

Accuracy@IoUδ. Following prior works [12, 1], we compute the percentage of predicted 3D834

bounding boxes whose Intersection over Union (IoU) with the ground-truth box exceeds a threshold835

δ ∈ {0.25, 0.50}:836

Acc@δ =
1

N

N∑
i=1

1

[
IoU(b̂i, b

gt
i ) > δ

]
,

where N is the number of queries, b̂i is the predicted box, and bgt
i is the ground truth.837

Mean IoU (mIoU). To provide a finer-grained measure of localization quality, we also report the838

mean IoU between the predicted and ground-truth boxes across all queries:839

mIoU =
1

N

N∑
i=1

IoU(b̂i, b
gt
i ) .

Unlike Acc@δ, which thresholds the overlap, mIoU captures continuous localization precision and840

is sensitive to small alignment errors. Together, these metrics provide a comprehensive view of841

grounding performance under both strict and relaxed criteria.842

B.5 Evaluation Protocol843

To ensure fair and reproducible comparison across models, we standardize the evaluation protocol844

across four benchmark settings.845

• Single-platform, single-object grounding. Models are trained and evaluated on the same846

platform ( Vehicle, Drone, and Quadruped), enabling assessment of in-domain847

performance under consistent sensor geometry and point cloud density. A prediction is848

considered correct if the predicted bounding box has an Intersection over Union (IoU) above849

a predefined threshold with the ground-truth box.850

• Cross-platform transfer. In this setting, models are trained on one platform and evaluated851

on a disjoint target platform (e.g., train on Vehicle, test on Drone). The evaluation852

protocol mirrors that of the single-object setting, enabling controlled assessment of cross-853

platform generalization.854

• Multi-object grounding. For queries referring to multiple objects within a scene, the model855

must predict all corresponding 3D bounding boxes. A prediction is deemed correct only if856

all referred objects are correctly localized with IoU above the threshold. This setting tests857

the model’s ability to handle complex referential expressions and object-object relationships.858

• Multi-platform grounding. Models are trained jointly on data from all three platforms859

and evaluated separately on each one. This setting examines the model’s robustness to860

diverse spatial distributions, sensor configurations, and environmental conditions in a unified861

training regime.862
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Table 11: Ablation on Cross-Platform Alignment (CPA). We train the model on the Vehicle
platform and evaluate it on Drone and Quadruped platforms.

CPA Drone Quadruped
Acc@25 Acc@50 Acc@25 Acc@50

✗ 15.53 9.24 34.54 22.46

✓ 18.84 13.03 35.29 27.10

Improve ↑ +3.31 +3.79 +0.75 +4.64

Reproducibility. All evaluations are conducted on a fixed validation split with no overlap between863

training and evaluation scenes. The evaluation pipeline is standardized across all settings, and we864

release our full codebase and configuration files to support reproducible benchmarking and future865

comparisons.866

C Additional Experimental Results867

In this section, we provide extended experimental results to complement the main paper.868

C.1 Effectiveness of Cross-Platform Alignment869

To evaluate the effectiveness of our Cross-Platform Alignment (CPA) module, we conduct an ablation870

where the model is trained on the Vehicle platform and tested on two unseen platforms:871

Drone and Quadruped. As shown in Table 11, removing CPA leads to a noticeable performance872

drop across both platforms, highlighting the challenge of viewpoint and elevation discrepancies in873

cross-platform transfer. Specifically, accuracy on the Drone platform drops from 18.84/13.03874

to 15.53/9.24, while on the Quadruped platform it decreases from 35.29/27.10 to 34.54/22.46.875

These results validate the importance of aligning gravity and normalizing altitude prior to feature876

extraction, enabling the model to better generalize to novel embodied viewpoints.877

D Additional Visual Comparisons878

In this section, we provide more qualitative examples to complement the main results. These879

visualizations illustrate the strengths and failure patterns of different methods across sensor platforms880

and grounding settings.881

D.1 Qualitative Results for Single-Object 3D Grounding882

Figure 14, Figure 15, and Figure 16 present single-object grounding results from the Vehicle883

Drone and Quadruped platforms, respectively. These comparisons reveal several key insights:884

• Vehicle Platform (Figure 14). Our method consistently localizes referred objects more885

accurately, particularly in crowded scenes. For instance, in examples involving parked or886

moving vehicles near intersections, our model correctly resolves spatial descriptions like887

“moving forward on the street, positioned near the crosswalk” or “parked on the right side of888

the street”, whereas baseline methods often misplace the box or miss the object entirely.889

• Drone Platform (Figure 15). Despite the elevated perspective and sparse point clouds,890

our method produces robust results by leveraging cross-platform cues. Notably, in scenes891

with occlusions or dense parking lots, our model successfully grounds phrases like “black892

SUV with grassy area to its left” and “white car with sunroof”, demonstrating resilience to893

complex layouts and ambiguous references. In contrast, EDA and BUTD-DETR frequently894

fail to produce any box or yield inaccurate boundaries.895
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A silver sedan driving on the road, 
positioned near the center of the 
image, with its rear facing the 
viewer.

A white sedan car moving 
forward on the street, positioned 
near the crosswalk.

A blue SUV parked on the right 
side of the street, near a 
pedestrian crossing.

Input BUTD-DETR EDA Ours

IoU: 75.82 IoU: 48.03 IoU: 80.21

IoU: 82.57IoU: 71.14IoU: 0.00

IoU: 51.25 IoU: 0.00 IoU: 72.15

A person walking across the 
street , wearing a dark jacket and 
pants , with a backpack on their 
back

A black compact car driving on 
the street, moving forward at a 
relatively fast speed.

A gray sedan parked on the side 
of the road, with its brake lights 
on, indicating it is stationary.

IoU: 79.52 IoU: 0.00 IoU: 83.01

IoU: 75.71IoU: 43.73IoU: 47.84

IoU: 81.28 IoU: 62.61 IoU: 85.05

Figure 14: Additional qualitative comparisons of single-object 3D grounding on the Vehicle
platform from the 3EED dataset. The data shown include the RGB frames, the LiDAR point clouds,
and the associated referring expressions. The ground truth and predicted boxes are shown in green
and blue, respectively. Best viewed in colors and zoomed in for more details.

• Quadruped Platform (Figure 16). Grounding from the quadruped perspective introduces896

unique challenges due to low-angle views and close-range objects. Our method shows clear897

improvements, accurately grounding pedestrians and vehicles even when facing away from898

the camera or interacting with the environment. For example, descriptions such as “moving899

towards a bridge” and “near the edge of the parking lot” are correctly localized only by our900

approach. Baselines either regress coarse boxes or misinterpret perspective cues.901

These qualitative comparisons validate the platform-agnostic design of our approach and demonstrate902

the ability to disambiguate fine-grained language in diverse visual-spatial contexts.903

D.2 Qualitative Results for Multi-Object 3D Grounding904

Figure 17 illustrates representative examples from the multi-object grounding setting. Here, each905

scene contains two referred objects and a complex expression that captures both individual character-906

istics and inter-object relationships.907
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A black SUV is parked in the 
upper left quadrant of the image, 
surrounded by cars in a parking 
lot, with a grassy area to its left.

A white car with a sunroof and a 
visible license plate is parked, 
surrounded by vehicles, and 
viewed from an elevated angle.

There is a large SUV parked on 
the right side of the parking lot, 
with other cars on its left.

Input BUTD-DETR EDA Ours

IoU: 0.00 IoU: 0.00 IoU: 76.56

IoU: 85.10IoU: 3.89IoU: 3.48

IoU: 50.34 IoU: 67.97 IoU: 82.75

A dark SUV is parked on a road, 
behind a zebra crossing and in 
front of a fence, with trees and 
other vehicles in the background.

A black car with a shiny exterior is 
parked in the foreground, 
occupying a significant portion of 
the right side of the image, 
surrounded by other vehicles and 
greenery in the background.

A metallic gray sedan is parked in 
a designated parking spot on the 
right side of the image, with 
another vehicle nearby.

IoU: 43.06 IoU: 66.21 IoU: 87.66

IoU: 61.54IoU: 0.00IoU: 0.00

IoU: 64.86 IoU: 65.57 IoU: 88.38

Figure 15: Additional qualitative comparisons of single-object 3D grounding on the Drone
platform from the 3EED dataset. The data shown include the RGB frames, the LiDAR point clouds,
and the associated referring expressions. The ground truth and predicted boxes are shown in green
and blue, respectively. Best viewed in colors and zoomed in for more details.

Our method shows notable advantages in:908

• Capturing relative semantics: In expressions like “a white oistal truck is taller than a yellow909

car” or “a silver sedan is to the left of a red car”, our model localizes both objects with high910

precision and correct relative positioning.911

• Handling comparatives and prepositions: Even in cases with overlapping objects or subtle912

distinctions, our method interprets spatial relations (e.g., “to the left of”, “is behind”) more913

reliably than baselines.914

• IoU consistency: The paired IoU scores (IoU1/IoU2) of our predictions are consistently915

higher, reflecting better localization and object differentiation.916

In contrast, BUTD-DETR [31] often fails to detect one of the objects, while EDA [80] tends to917

confuse spatial hierarchy, misplace referred instances, or miss the relationships altogether.918

Overall, these visual results demonstrate that our model excels not only in individual object grounding919

but also in multi-entity reasoning, which is crucial for real-world applications requiring collaborative920

spatial understanding.921
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Pedestrian wearing a white shirt 
is walking along a path under an 
overpass, with two other 
individuals following behind.

Pedestrian is sitting on a graffiti-
covered ledge, with another 
person standing nearby and trees 
in the background.

A person in a white t-shirt and 
dark pants is skateboarding in 
the foreground, with a concrete 
ramp in the background.

Input BUTD-DETR EDA Ours

IoU: 0.00 IoU: 84.36 IoU: 87.93

IoU: 80.42IoU: 74.24IoU: 75.36

IoU: 53.20 IoU: 62.11 IoU: 70.63

A silver car is parked near the 
edge of the parking lot, with a 
clear space between it and the 
adjacent cars.

A black SUV is parked in the 
middle of a parking lot, 
surrounded by other cars.

Pedestrian is walking on a path, 
moving towards a bridge, passing 
by a trash can and approaching a 
set of stairs.

IoU: 1.70 IoU: 48.51 IoU: 71.37

IoU: 73.84IoU: 32.07IoU: 32.71

IoU: 60.91 IoU: 69.45 IoU: 78.48

Figure 16: Additional qualitative comparisons of single-object 3D grounding on the Quadruped
platform from the 3EED dataset. The data shown include the RGB frames, the LiDAR point clouds,
and the associated referring expressions. The ground truth and predicted boxes are shown in green
and blue, respectively. Best viewed in colors and zoomed in for more details.

E Broader Impact & Limitations922

In this section, we elaborate on the broader impact, societal influence, and potential limitations.923

E.1 Broader Impact924

This work introduces a new benchmark and methodology for 3D visual grounding across diverse925

robotic platforms, including vehicles, drones, and quadrupeds. By addressing cross-platform percep-926

tion and grounding under real-world sparsity, we hope to inspire future research in robust, generaliz-927

able spatial language understanding. The dataset and evaluation settings reflect realistic conditions928

encountered by embodied agents in autonomous driving, inspection, and delivery. We expect this929

work to benefit the development of safe, context-aware decision-making systems that can interpret930

human intent across environments. All data collection and annotation followed privacy-compliant931

and publicly accessible sources.932
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A black car parked on the left 
side of the street is behind a 
white car parked on the same 
side of the street.

A blue SUV with its brake lights 
on is to the left of a silver Honda 
SUV also stopped at the traffic 
light.

A small gray sedan on the right 
side of the road is shorter than a 
large red SUV stopped at the 
intersection.

Input BUTD-DETR EDA Ours

IoU1:0.00    IoU2: 6.98 IoU1:67.24   IoU2: 2.98 IoU1:85.81   IoU2:86.89 

IoU1:80.21    IoU2:81.77 IoU1:0.00   IoU2: 69.74IoU1:0.00    IoU2: 65.15

IoU1:71.96    IoU2:70.09 IoU1: 66.43  IoU2: 75.50 IoU1:74.55   IoU2: 87.36

A silver sedan driving on the road 
is to the left of a red car stopped 
at the traffic light.

A black car with its brake lights 
on is shorter than a person
standing near a building on the 
right side of the street.

A white postal truck driving down 
the street is taller than a yellow 
car parked on the side of the road.

IoU1:0.00    IoU2: 68.87 IoU1:67.24    IoU2: 2.98 IoU1:85.81  IoU2: 86.89

IoU1:76.84   IoU2:67.97IoU1:71.55    IoU2: 0.00IoU1:71.10   IoU2: 59.36

IoU1:15.73    IoU2:0.00 IoU1:31.92    IoU2: 0.00 IoU1:68.20   IoU2:83.61

Figure 17: Additional qualitative comparisons of multi-object 3D grounding approaches on the
3EED dataset. The data shown include the RGB frames, the LiDAR point clouds, and the associated
referring expressions. The ground truth and predicted boxes in the prediction results are shown in
green and blue, respectively. Best viewed in colors and zoomed in for more details.

E.2 Societal Influence933

The ability to ground language in 3D scenes is critical for real-world human-robot interaction,934

especially in complex outdoor scenarios. Our benchmark enables evaluating such capabilities beyond935

indoor or single-device assumptions, pushing toward a more inclusive and scalable understanding.936

Potential downstream applications include collaborative navigation, voice-based robotics control,937

and assistive technologies in search-and-rescue operations. While our dataset promotes progress in938

these areas, we note that grounding models trained on limited sensory conditions may inadvertently939

inherit biases from pretrained language models or overlook vulnerable populations in data-scarce940

environments.941

E.3 Potential Limitations942

Despite its scale and diversity, our dataset may still suffer from platform-specific biases (e.g., drone943

views emphasizing sparse or elevated contexts), which could limit generalization. The current944

version focuses primarily on static scenes with one or more referred objects, without modeling945
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temporal dynamics or dialogue-based interaction. In addition, our evaluation settings assume accurate946

text descriptions and do not yet account for ambiguous, contradictory, or noisy language input.947

Furthermore, while our benchmark covers three robotic platforms, generalization to other types of948

sensors or modalities (e.g., thermal, event cameras) remains unexplored.949

F Public Resource Used950

In this section, we acknowledge the use of the public resources, during the course of this work:951

F.1 Public Datasets Used952

• M3ED2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0953

• Waymo Open Dataset3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0954

F.2 Public Implementation Used955

• BUTD-DETR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0 License956

• EDA5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0 License957

• Open3D6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License958

• PyTorch7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSD License959

• Pointnet2 PyTorch 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UNLICENSE960

• PointNet++9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License961

• xtreme110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0962
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NeurIPS Paper Checklist964

1. Claims965

Question: Do the main claims made in the abstract and introduction accurately reflect the966

paper’s contributions and scope?967

Answer: [Yes]968

Justification: Both contributions and scope have been discussed in abstract and introduction.969

Guidelines:970

• The answer NA means that the abstract and introduction do not include the claims971

made in the paper.972

• The abstract and/or introduction should clearly state the claims made, including the973

contributions made in the paper and important assumptions and limitations. A No or974

NA answer to this question will not be perceived well by the reviewers.975

• The claims made should match theoretical and experimental results, and reflect how976

much the results can be expected to generalize to other settings.977

• It is fine to include aspirational goals as motivation as long as it is clear that these goals978

are not attained by the paper.979

2. Limitations980

Question: Does the paper discuss the limitations of the work performed by the authors?981

Answer: [Yes]982

Justification: The detailed analysis on limitations have been discussed in the appendix.983

Guidelines:984

• The answer NA means that the paper has no limitation while the answer No means that985

the paper has limitations, but those are not discussed in the paper.986

• The authors are encouraged to create a separate "Limitations" section in their paper.987

• The paper should point out any strong assumptions and how robust the results are to988

violations of these assumptions (e.g., independence assumptions, noiseless settings,989

model well-specification, asymptotic approximations only holding locally). The authors990

should reflect on how these assumptions might be violated in practice and what the991

implications would be.992

• The authors should reflect on the scope of the claims made, e.g., if the approach was993

only tested on a few datasets or with a few runs. In general, empirical results often994

depend on implicit assumptions, which should be articulated.995

• The authors should reflect on the factors that influence the performance of the approach.996

For example, a facial recognition algorithm may perform poorly when image resolution997

is low or images are taken in low lighting. Or a speech-to-text system might not be998

used reliably to provide closed captions for online lectures because it fails to handle999

technical jargon.1000

• The authors should discuss the computational efficiency of the proposed algorithms1001

and how they scale with dataset size.1002

• If applicable, the authors should discuss possible limitations of their approach to1003

address problems of privacy and fairness.1004

• While the authors might fear that complete honesty about limitations might be used by1005

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1006

limitations that aren’t acknowledged in the paper. The authors should use their best1007

judgment and recognize that individual actions in favor of transparency play an impor-1008

tant role in developing norms that preserve the integrity of the community. Reviewers1009

will be specifically instructed to not penalize honesty concerning limitations.1010

3. Theory assumptions and proofs1011
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Question: For each theoretical result, does the paper provide the full set of assumptions and1012

a complete (and correct) proof?1013

Answer: [N/A]1014

Justification: This is an empirical study that excludes theory assumptions and proofs.1015

Guidelines:1016

• The answer NA means that the paper does not include theoretical results.1017

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1018

referenced.1019

• All assumptions should be clearly stated or referenced in the statement of any theorems.1020

• The proofs can either appear in the main paper or the supplemental material, but if1021

they appear in the supplemental material, the authors are encouraged to provide a short1022

proof sketch to provide intuition.1023

• Inversely, any informal proof provided in the core of the paper should be complemented1024

by formal proofs provided in appendix or supplemental material.1025

• Theorems and Lemmas that the proof relies upon should be properly referenced.1026

4. Experimental result reproducibility1027

Question: Does the paper fully disclose all the information needed to reproduce the1028

main experimental results of the paper to the extent that it affects the main claims and/or1029

conclusions of the paper (regardless of whether the code and data are provided or not)?1030

Answer: [Yes]1031

Justification: All information needed to reproduce the experimental results have been1032

disclosed. To ensure reproducibility, code and data are committed to be publicly available.1033

Guidelines:1034

• The answer NA means that the paper does not include experiments.1035

• If the paper includes experiments, a No answer to this question will not be perceived1036

well by the reviewers: Making the paper reproducible is important, regardless of1037

whether the code and data are provided or not.1038

• If the contribution is a dataset and/or model, the authors should describe the steps taken1039

to make their results reproducible or verifiable.1040

• Depending on the contribution, reproducibility can be accomplished in various ways.1041

For example, if the contribution is a novel architecture, describing the architecture fully1042

might suffice, or if the contribution is a specific model and empirical evaluation, it may1043

be necessary to either make it possible for others to replicate the model with the same1044

dataset, or provide access to the model. In general. releasing code and data is often1045

one good way to accomplish this, but reproducibility can also be provided via detailed1046

instructions for how to replicate the results, access to a hosted model (e.g., in the case1047

of a large language model), releasing of a model checkpoint, or other means that are1048

appropriate to the research performed.1049

• While NeurIPS does not require releasing code, the conference does require all submis-1050

sions to provide some reasonable avenue for reproducibility, which may depend on the1051

nature of the contribution. For example1052

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1053

to reproduce that algorithm.1054

(b) If the contribution is primarily a new model architecture, the paper should describe1055

the architecture clearly and fully.1056

(c) If the contribution is a new model (e.g., a large language model), then there should1057

either be a way to access this model for reproducing the results or a way to reproduce1058

the model (e.g., with an open-source dataset or instructions for how to construct1059

the dataset).1060
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(d) We recognize that reproducibility may be tricky in some cases, in which case1061

authors are welcome to describe the particular way they provide for reproducibility.1062

In the case of closed-source models, it may be that access to the model is limited in1063

some way (e.g., to registered users), but it should be possible for other researchers1064

to have some path to reproducing or verifying the results.1065

5. Open access to data and code1066

Question: Does the paper provide open access to the data and code, with sufficient instruc-1067

tions to faithfully reproduce the main experimental results, as described in supplemental1068

material?1069

Answer: [Yes]1070

Justification: The detailed implementation procedures have been included in the appendix.1071

To ensure reproducibility, code and data are committed to be publicly available.1072

Guidelines:1073

• The answer NA means that paper does not include experiments requiring code.1074

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1075

public/guides/CodeSubmissionPolicy) for more details.1076

• While we encourage the release of code and data, we understand that this might not be1077

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1078

including code, unless this is central to the contribution (e.g., for a new open-source1079

benchmark).1080

• The instructions should contain the exact command and environment needed to run to1081

reproduce the results. See the NeurIPS code and data submission guidelines (https:1082

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1083

• The authors should provide instructions on data access and preparation, including how1084

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1085

• The authors should provide scripts to reproduce all experimental results for the new1086

proposed method and baselines. If only a subset of experiments are reproducible, they1087

should state which ones are omitted from the script and why.1088

• At submission time, to preserve anonymity, the authors should release anonymized1089

versions (if applicable).1090

• Providing as much information as possible in supplemental material (appended to the1091

paper) is recommended, but including URLs to data and code is permitted.1092

6. Experimental setting/details1093

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1094

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1095

results?1096

Answer: [Yes]1097

Justification: All training and test details have been discussed in either main body or1098

appendix. To ensure reproducibility, code and data are committed to be publicly available.1099

Guidelines:1100

• The answer NA means that the paper does not include experiments.1101

• The experimental setting should be presented in the core of the paper to a level of detail1102

that is necessary to appreciate the results and make sense of them.1103

• The full details can be provided either with the code, in appendix, or as supplemental1104

material.1105

7. Experiment statistical significance1106

Question: Does the paper report error bars suitably and correctly defined or other appropriate1107

information about the statistical significance of the experiments?1108
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Answer: [Yes]1109

Justification: Sufficient information about experiment settings have been discussed.1110

Guidelines:1111

• The answer NA means that the paper does not include experiments.1112

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1113

dence intervals, or statistical significance tests, at least for the experiments that support1114

the main claims of the paper.1115

• The factors of variability that the error bars are capturing should be clearly stated (for1116

example, train/test split, initialization, random drawing of some parameter, or overall1117

run with given experimental conditions).1118

• The method for calculating the error bars should be explained (closed form formula,1119

call to a library function, bootstrap, etc.)1120

• The assumptions made should be given (e.g., Normally distributed errors).1121

• It should be clear whether the error bar is the standard deviation or the standard error1122

of the mean.1123

• It is OK to report 1-sigma error bars, but one should state it. The authors should1124

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1125

of Normality of errors is not verified.1126

• For asymmetric distributions, the authors should be careful not to show in tables or1127

figures symmetric error bars that would yield results that are out of range (e.g. negative1128

error rates).1129

• If error bars are reported in tables or plots, The authors should explain in the text how1130

they were calculated and reference the corresponding figures or tables in the text.1131

8. Experiments compute resources1132

Question: For each experiment, does the paper provide sufficient information on the1133

computer resources (type of compute workers, memory, time of execution) needed to1134

reproduce the experiments?1135

Answer: [Yes]1136

Justification: The details on computing resources have been discussed.1137

Guidelines:1138

• The answer NA means that the paper does not include experiments.1139

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1140

or cloud provider, including relevant memory and storage.1141

• The paper should provide the amount of compute required for each of the individual1142

experimental runs as well as estimate the total compute.1143

• The paper should disclose whether the full research project required more compute1144

than the experiments reported in the paper (e.g., preliminary or failed experiments that1145

didn’t make it into the paper).1146

9. Code of ethics1147

Question: Does the research conducted in the paper conform, in every respect, with the1148

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1149

Answer: [Yes]1150

Justification: This research follows the NeurIPS Code of Ethics properly.1151

Guidelines:1152

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1153

• If the authors answer No, they should explain the special circumstances that require a1154

deviation from the Code of Ethics.1155
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1156

eration due to laws or regulations in their jurisdiction).1157

10. Broader impacts1158

Question: Does the paper discuss both potential positive societal impacts and negative1159

societal impacts of the work performed?1160

Answer: [Yes]1161

Justification: The discussion on societal impacts has been included in the appendix.1162

Guidelines:1163

• The answer NA means that there is no societal impact of the work performed.1164

• If the authors answer NA or No, they should explain why their work has no societal1165

impact or why the paper does not address societal impact.1166

• Examples of negative societal impacts include potential malicious or unintended uses1167

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1168

(e.g., deployment of technologies that could make decisions that unfairly impact specific1169

groups), privacy considerations, and security considerations.1170

• The conference expects that many papers will be foundational research and not tied1171

to particular applications, let alone deployments. However, if there is a direct path to1172

any negative applications, the authors should point it out. For example, it is legitimate1173

to point out that an improvement in the quality of generative models could be used to1174

generate deepfakes for disinformation. On the other hand, it is not needed to point out1175

that a generic algorithm for optimizing neural networks could enable people to train1176

models that generate Deepfakes faster.1177

• The authors should consider possible harms that could arise when the technology is1178

being used as intended and functioning correctly, harms that could arise when the1179

technology is being used as intended but gives incorrect results, and harms following1180

from (intentional or unintentional) misuse of the technology.1181

• If there are negative societal impacts, the authors could also discuss possible mitigation1182

strategies (e.g., gated release of models, providing defenses in addition to attacks,1183

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1184

feedback over time, improving the efficiency and accessibility of ML).1185

11. Safeguards1186

Question: Does the paper describe safeguards that have been put in place for responsible1187

release of data or models that have a high risk for misuse (e.g., pretrained language models,1188

image generators, or scraped datasets)?1189

Answer: [Yes]1190

Justification: The discussion on safeguards has been included in the appendix.1191

Guidelines:1192

• The answer NA means that the paper poses no such risks.1193

• Released models that have a high risk for misuse or dual-use should be released with1194

necessary safeguards to allow for controlled use of the model, for example by requiring1195

that users adhere to usage guidelines or restrictions to access the model or implementing1196

safety filters.1197

• Datasets that have been scraped from the Internet could pose safety risks. The authors1198

should describe how they avoided releasing unsafe images.1199

• We recognize that providing effective safeguards is challenging, and many papers do1200

not require this, but we encourage authors to take this into account and make a best1201

faith effort.1202

12. Licenses for existing assets1203
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in1204

the paper, properly credited and are the license and terms of use explicitly mentioned and1205

properly respected?1206

Answer: [Yes]1207

Justification: The acknowledgments on licenses have been included in the appendix.1208

Guidelines:1209

• The answer NA means that the paper does not use existing assets.1210

• The authors should cite the original paper that produced the code package or dataset.1211

• The authors should state which version of the asset is used and, if possible, include a1212

URL.1213

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1214

• For scraped data from a particular source (e.g., website), the copyright and terms of1215

service of that source should be provided.1216

• If assets are released, the license, copyright information, and terms of use in the1217

package should be provided. For popular datasets, paperswithcode.com/datasets1218

has curated licenses for some datasets. Their licensing guide can help determine the1219

license of a dataset.1220

• For existing datasets that are re-packaged, both the original license and the license of1221

the derived asset (if it has changed) should be provided.1222

• If this information is not available online, the authors are encouraged to reach out to1223

the asset’s creators.1224

13. New assets1225

Question: Are new assets introduced in the paper well documented and is the documentation1226

provided alongside the assets?1227

Answer: [Yes]1228

Justification: The discussions on new assets have been included in the appendix.1229

Guidelines:1230

• The answer NA means that the paper does not release new assets.1231

• Researchers should communicate the details of the dataset/code/model as part of their1232

submissions via structured templates. This includes details about training, license,1233

limitations, etc.1234

• The paper should discuss whether and how consent was obtained from people whose1235

asset is used.1236

• At submission time, remember to anonymize your assets (if applicable). You can either1237

create an anonymized URL or include an anonymized zip file.1238

14. Crowdsourcing and research with human subjects1239

Question: For crowdsourcing experiments and research with human subjects, does the1240

paper include the full text of instructions given to participants and screenshots, if applicable,1241

as well as details about compensation (if any)?1242

Answer: [N/A]1243

Justification: This work does not involve crowdsourcing nor research with human subjects.1244

Guidelines:1245

• The answer NA means that the paper does not involve crowdsourcing nor research with1246

human subjects.1247

• Including this information in the supplemental material is fine, but if the main contribu-1248

tion of the paper involves human subjects, then as much detail as possible should be1249

included in the main paper.1250
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1251

or other labor should be paid at least the minimum wage in the country of the data1252

collector.1253

15. Institutional review board (IRB) approvals or equivalent for research with human1254

subjects1255

Question: Does the paper describe potential risks incurred by study participants, whether1256

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1257

approvals (or an equivalent approval/review based on the requirements of your country or1258

institution) were obtained?1259

Answer: [N/A]1260

Justification: This work does not involve crowdsourcing nor research with human subjects.1261

Guidelines:1262

• The answer NA means that the paper does not involve crowdsourcing nor research with1263

human subjects.1264

• Depending on the country in which research is conducted, IRB approval (or equivalent)1265

may be required for any human subjects research. If you obtained IRB approval, you1266

should clearly state this in the paper.1267

• We recognize that the procedures for this may vary significantly between institutions1268

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1269

guidelines for their institution.1270

• For initial submissions, do not include any information that would break anonymity (if1271

applicable), such as the institution conducting the review.1272

16. Declaration of LLM usage1273

Question: Does the paper describe the usage of LLMs if it is an important, original, or1274

non-standard component of the core methods in this research? Note that if the LLM is used1275

only for writing, editing, or formatting purposes and does not impact the core methodology,1276

scientific rigorousness, or originality of the research, declaration is not required.1277

Answer: [N/A]1278

Justification: The core method development in this research does not involve LLMs as any1279

important, original, or non-standard components.1280

Guidelines:1281

• The answer NA means that the core method development in this research does not1282

involve LLMs as any important, original, or non-standard components.1283

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1284

for what should or should not be described.1285
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